精彩评论




深度学作为人工智能的要紧分支正在改变着各行各业。本文将为您详细介绍怎样利用飞桨(PaddlePaddle)框架实行深度学任务的开发,从数据集的准备到模型的训练与评估,让您快速上手深度学实战。
飞桨是我国自主研发的开源深度学框架,具有易于上手、高性能、可扩展性强等特点。飞桨提供了丰富的高层API和基础API,支持分布式训练、TensorRT推理等功能,让深度学开发者可以更高效地完成任务。
在开始实战之前,保障您已经安装了飞桨。倘使未安装,可利用以下命令实行安装:
```bash
pip install paddlepaddle
```
以下是深度学任务的一般核心步骤:
在开始训练之前需要准备相应的数据集。数据集可是图像、文本、音频等类型,依据任务需求实选择。本文以手写数字识别任务为例,利用MNIST数据集。
飞桨提供了一套完整的API来帮助使用者定义和加载数据集。以下为加载MNIST数据集的示例代码:
```python
import paddle
from paddle.vision.transforms import ToTensor
trn_dataset = paddle.vision.datasets.MNIST(mode='trn', transform=ToTensor())
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=ToTensor())
trn_loader = paddle.io.DataLoader(trn_dataset, batch_size=64, shuffle=True)
test_loader = paddle.io.DataLoader(test_dataset, batch_size=64)
```
咱们需要构建一个卷积神经网络(CNN)模型用于手写数字识别任务。以下为构建模型的示例代码:
```python
import paddle.nn as nn
import paddle.optimizer as optim
class CNN(nn.Layer):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1)
self.max_pool1 = nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = nn.Conv2D(in_channels=20, out_channels=50, kernel_size=5, stride=1)
self.max_pool2 = nn.MaxPool2D(kernel_size=2, stride=2)
self.fc1 = nn.Linear(in_features=800, out_features=500)
self.fc2 = nn.Linear(in_features=500, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.max_pool2(x)
x = paddle.flatten(x, 1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
model = CNN()
```
在模型构建完成后,咱们需要对模型实行训练。以下为训练模型的示例代码:
```python
epochs = 5
learning_rate = 0.001
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(parameters=model.parameters(), learning_rate=learning_rate)
for epoch in range(epochs):
for batch_id, (images, labels) in enumerate(trn_loader):
predicts = model(images)
loss = loss_fn(predicts, labels)
loss.backward()
optimizer.step()
optimizer.clear_grad()
if batch_id % 100 == 0:
print(fEpoch [{epoch 1}/{epochs}], Batch: {batch_id}, Loss: {loss.numpy()[0]})
```
在模型训练完成后,咱们需要对模型实行评估,以验证模型的性能。以下为评估模型的示例代码:
```python
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
predicted = paddle.argmax(outputs, axis=1)
total = labels.shape[0]
correct = (predicted == labels).sum().item()
print(f'Accuracy: {correct / total * 100}%')
```
Copyright © 2000 - 2023 All Rights Reserved.